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Table 3. Parameters for Greeley Simulation 

Variable Value Unit 
𝑄 5 ⋅ 108 kg/yr 

tfinal 3 yr 
𝜎𝑛 −6.0 ⋅ 107 Pa 

𝑃(𝑡 = 0, 𝑥) 3 ⋅ 107 Pa 
𝑘𝐷𝐹𝑁,𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 3.6 ⋅ 10−14   m2  
𝑘𝐷𝐹𝑁,𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡  10-17 m2  
𝑘𝐸𝑃𝑀,𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡  4.2 ⋅ 10−15   m2  

𝑘𝑚𝑢𝑑 10−17 m2  
𝑘𝑠𝑠 4 ⋅ 10−14 m2  

𝜙𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡  0.05  
𝜙𝑚𝑢𝑑 0.2  
𝜙𝑠𝑠 0.25  

𝛽𝑚,𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡  10-9 Pa-1 
𝛽𝑚,𝑚𝑢𝑑  10-8 Pa-1 
𝛽𝑚,𝑠𝑠 10-8 Pa-1 
𝛽𝑓 4.4 ⋅ 10−10 Pa-1 
𝜇 8.9 ⋅ 10−10 Pa-s 
𝑏𝑝 50 m 

Since the fractures and their contribution to permeability 
are the most uncertain part of the system, we set up the 
DFNM simulation first.  The parameters are shown in 
Table 3 and the conceptual model is shown in Figure 4.  
There are no-flux boundaries on the sides and bottom of 
the domain, and the top has a prescribed pressure 
boundary condition of 30 MPa.  For simplicity, we 
assume that the initial pressure and the normal stress on 
all fractures are 30 MPa and 60 MPa respectively, but in 
future work these values can easily be specified as 
functions of space. Injection takes place for three years 
into the center of the injection interval.  We randomly 
generate 500 fractures using the 2D Levy Lee algorithm 
(Clemo and Smith, 1997).  These fractures are extended 
for the full width of the domain in the y direction, which 
was an assumption of convenience.  More sophisticated 
three-dimensional fracture network generation algorithms 
can be used in the future.  Since these fractures represent 
the largest basement fractures, we use the following 
Bandis parameters to yield larger aperture than in 
previous sections: 𝐴 = 10−11 m/Pa, 𝑏𝑚𝑖𝑛 = 2 ⋅ 10−4 m, 
and 𝑏𝑚𝑎𝑥 = 4 ⋅ 10−4 m.  The resulting fracture aperture 
at the initial pressure and in-situ stress is 0.28 mm, which 
assigns a permeability of 3.6 ⋅ 10−14 m2 for our grid 
spacing.  The parameters for the sandstone injection 
formation and the mudstone confining layer are based 
primarily on Brown et al. (2017). 

Since we want a meaningful comparison between the 
DFNM and EPM models, we use a numerical 
permeameter test to find the effective permeability of the 
basement.  This involves assigning a pressure gradient 
across the basement in the x direction with no flux 
boundaries everywhere else and waiting until steady state 
when the inlet and outlet flow rates are equal.  From the 
flow rates and pressure gradient, the effective 

permeability in the x direction can be calculated.  This is 
repeated in the z direction, and we find that the effective 
permeability was 4.2 ⋅ 10−15 m2 in both directions.  This 
isotropic value is used for the basement in the EPM 
simulation. 

 

Fig. 5. Greeley slice plots of pressure increase for (a) EPM, (b) 
static-aperture DFNM and (c) evolving-aperture DFNM.  The 
change in pressure of 0.07 MPa indicated by red colors shows 
the region at or above the critical pressure.  The horizontal black 
line indicates the top of the crystalline basement, and the 
vertical grey line indicates the injecting portion of the well.  The 
EPM has the most homogeneous response while the DFNMs 
have more heterogeneous responses.  For the evolving-aperture 
DFNM, the critical pressure reaches depths that are greater than 
the other two simulations (see red arrow).  The yellow arrow 
points to a dead-end fracture that is more highly pressurized 
than it was in the static-fracture DFNM, and the green arrow 
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Can we mechanistically simulate production as a 
means to optimize production?

Los Alamos National Laboratory

Hypothesis: Production curves reflect physical and chemical 
phenomena that change with time

• 20% from early times (<1 
yr) and 80% at later times

• Both early and late time 
are critical for improving 
production

• Early times controlled by 
connectivity between 
generated and natural 
fractures 

• Late time due to 
interaction between 
matrix and small fractures
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Research Goal:
Optimize Production through Improved Pressure Management
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Anecdotal Evidence
• Operators report that producing slower 

or using pressure maintenance 
enhances total production

• What mechanisms control 
pressure-production behavior?

• What controls the crossover time? 
• Operators report that shutting in a well 

increases production
• How does shut-in increase 

production?
• Does increased production last 

over the lifetime of the well?
• When is shut-in detrimental to 

productivity?

Value Proposition
• Optimizing drawdown, shut-in time and 

pressure cycling/maintenance will 
significantly increase recovery
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Research Approach:
Develop physics-based analysis and predictions of production
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Achieve DOE Goal:
Efficient and Environmentally Sound Use of Fossil Fuels: More Recovery from Fewer Wells



Work Flow for Reservoir-Scale Analysis of Pressure Management Strategy
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Computationally intensive grids 
(big data, large run times)

Equivalent Graph 
Representation retains 

Geometry and Connectivity
103-107 degrees of freedom

High Fidelity 
Fracture Models

1 cell has 106-1010 dof

Quantity of Interest:
Production Curve

Graph G(size, length, location, orientation, betweenness centrality, eccentricity …)

Edge E12
Vertex V1 Vertex V2

Efficient Machine Learning 
Graph Emulators with 
Uncertainty Quantification
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Task 3: Reservoir-Scale Simulation

G. Srinivasan, J.D.Hyman, D.Osthus, B.Moore, D.O’Malley, S.Karra, E.Rougier, A.Hagberg, A.Hunter, and H. Viswanathan. Quantifying 
topological uncertainty in fractured systems using graph theory and machine learning. Nature Scientific Reports, 2017. 



Verification of Graph-based Reduced Order Model for Production Simulations 
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Proof of Concept: Simulating High and Low Drawdown Cases 
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Next Step: Use pressure aperture relationship from experiments to inform simulations
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Work Flow for Lab-Scale Analysis of Pressure Drawdown

Triaxial Direct-Shear Coreflood X-ray Radiography Stress-Aperture-Permeability
Data

Task 4: Laboratory-Scale Experiments
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Pressure Drawdown Results in Loss of Aperture and 
Permeability–Results for Marcellus Shale

Frash et al. 2017 IJGGC

Task 4: Laboratory-Scale Experiments
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MSEEL: Post-Fracture Stress-Permeability Relationship
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Work Flow for Pore-Scale Analysis of Pressure Impact on 
Oil Recovery from Shale Matrix  

Neutron small-angle 
scattering of fluids 
distribution in pores

Microfluidics study 
of matrix-fracture 
communication

Lattice Boltzmann 
modeling of pore-scale 
processes

LANL-designed neutron-
based flow-through 
compressional cell
stresses (100 bar).

High-pressure/temperature 
microfluidics laboratory

3-D representation of pore-
structure in shale from CT 
data

Task 5: Pore-Scale Experiments and Simulation
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Neutron Analyses of Pore-Scale Controls 
on Hydrocarbon in the Shale Matrix  

Capillary Condensation of methane at 
elevated pressure increases reservoir 
hydrocarbon capacity

Capillary Condensation of methane at 
elevated pressure increases reservoir 
hydrocarbon capacity

Task 5: Pore-Scale Experiments and Simulation
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Microfluidics Reveals Matrix-Fracture Communication and 
Multiphase Hydrocarbon Recovery Processes 

Task 4: Fracture Properties

Decane

Gas

2. Imbibition of oil 
produces gas from 
matrix

1. Surfactant-water 
flows through matrix

3. More oil is removed 
from fracture network 
by surfactant solution

2. Imbibition of oil 
produces gas from 
matrix

1. Surfactant-water 
flows through matrix

Rate of Hydraulic Fluid and Oil Transport Between Fracture and Matrix

Recovery of Hydrocarbon from Fracture Networks with and without Surfactant 

Task 5: Pore-Scale Experiments and Simulation
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Lattice Boltzmann Analysis of Pressure Gradient Impact 
on Hydrocarbon Production

• Pore-scale numerical simulations can provide functional relationship between 
sweeping efficiency and pressure gradient

A lower pressure gradient (left) leads to capillary fingering and higher sweeping efficiency than the case 
of viscous fingering caused by a higher pressure gradient (right)

Low pressure gradient = 
Greater recovery

High pressure gradient = 
Lower recovery

Task 5: Pore-Scale Experiments and Simulation
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Project Framework for Prediction of Fracture Networks

§ Predict changes in fracture mechanical  
aperture from stress changes
§ Analysis of experimental data

§ Predict hydraulic aperture (permeability) 
from fracture aperture
• Cubic-law, experimental data, pore-

scale models 

§ Predict fracture mechanical aperture from fracture length and 
displacement
• Literature plus experimental observations

Lab Field Simulation 

Task 6: Integration



Conclusions:
Optimized Production through Pressure Management
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Table 3. Parameters for Greeley Simulation 

Variable Value Unit 
𝑄 5 ⋅ 108 kg/yr 

tfinal 3 yr 
𝜎𝑛 −6.0 ⋅ 107 Pa 

𝑃(𝑡 = 0, 𝑥) 3 ⋅ 107 Pa 
𝑘𝐷𝐹𝑁,𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 3.6 ⋅ 10−14   m2  
𝑘𝐷𝐹𝑁,𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡  10-17 m2  
𝑘𝐸𝑃𝑀,𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡  4.2 ⋅ 10−15   m2  

𝑘𝑚𝑢𝑑 10−17 m2  
𝑘𝑠𝑠 4 ⋅ 10−14 m2  

𝜙𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡  0.05  
𝜙𝑚𝑢𝑑 0.2  
𝜙𝑠𝑠 0.25  

𝛽𝑚,𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡  10-9 Pa-1 
𝛽𝑚,𝑚𝑢𝑑  10-8 Pa-1 
𝛽𝑚,𝑠𝑠 10-8 Pa-1 
𝛽𝑓 4.4 ⋅ 10−10 Pa-1 
𝜇 8.9 ⋅ 10−10 Pa-s 
𝑏𝑝 50 m 

Since the fractures and their contribution to permeability 
are the most uncertain part of the system, we set up the 
DFNM simulation first.  The parameters are shown in 
Table 3 and the conceptual model is shown in Figure 4.  
There are no-flux boundaries on the sides and bottom of 
the domain, and the top has a prescribed pressure 
boundary condition of 30 MPa.  For simplicity, we 
assume that the initial pressure and the normal stress on 
all fractures are 30 MPa and 60 MPa respectively, but in 
future work these values can easily be specified as 
functions of space. Injection takes place for three years 
into the center of the injection interval.  We randomly 
generate 500 fractures using the 2D Levy Lee algorithm 
(Clemo and Smith, 1997).  These fractures are extended 
for the full width of the domain in the y direction, which 
was an assumption of convenience.  More sophisticated 
three-dimensional fracture network generation algorithms 
can be used in the future.  Since these fractures represent 
the largest basement fractures, we use the following 
Bandis parameters to yield larger aperture than in 
previous sections: 𝐴 = 10−11 m/Pa, 𝑏𝑚𝑖𝑛 = 2 ⋅ 10−4 m, 
and 𝑏𝑚𝑎𝑥 = 4 ⋅ 10−4 m.  The resulting fracture aperture 
at the initial pressure and in-situ stress is 0.28 mm, which 
assigns a permeability of 3.6 ⋅ 10−14 m2 for our grid 
spacing.  The parameters for the sandstone injection 
formation and the mudstone confining layer are based 
primarily on Brown et al. (2017). 

Since we want a meaningful comparison between the 
DFNM and EPM models, we use a numerical 
permeameter test to find the effective permeability of the 
basement.  This involves assigning a pressure gradient 
across the basement in the x direction with no flux 
boundaries everywhere else and waiting until steady state 
when the inlet and outlet flow rates are equal.  From the 
flow rates and pressure gradient, the effective 

permeability in the x direction can be calculated.  This is 
repeated in the z direction, and we find that the effective 
permeability was 4.2 ⋅ 10−15 m2 in both directions.  This 
isotropic value is used for the basement in the EPM 
simulation. 

 

Fig. 5. Greeley slice plots of pressure increase for (a) EPM, (b) 
static-aperture DFNM and (c) evolving-aperture DFNM.  The 
change in pressure of 0.07 MPa indicated by red colors shows 
the region at or above the critical pressure.  The horizontal black 
line indicates the top of the crystalline basement, and the 
vertical grey line indicates the injecting portion of the well.  The 
EPM has the most homogeneous response while the DFNMs 
have more heterogeneous responses.  For the evolving-aperture 
DFNM, the critical pressure reaches depths that are greater than 
the other two simulations (see red arrow).  The yellow arrow 
points to a dead-end fracture that is more highly pressurized 
than it was in the static-fracture DFNM, and the green arrow 

Pore-Scale Fracture-Scale Reservoir-Scale

• High-fidelity discrete fracture 
network modeling combined 
with machine learning 
demonstrates cross-over:
potential higher cumulative 
production through pressure 
management

• Coupled fracture studies 
with x-ray imaging allows 
determination of impact of 
pressure drawdown on 
fracture permeability and 
ultimate recovery

• Pore-scale studies 
show how pressure 
gradients control 
fluid mobility and 
fracture-matrix 
communication

The production of unconventional reservoirs can be enhanced through experimentation 
and physics-based modeling of hydrocarbon behavior in complex fracture networks.
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